a2 United States Patent

US009411743B2

10) Patent No.: US 9,411,743 B2

Jacob et al. (45) Date of Patent: Aug. 9, 2016
(54) DETECTING MEMORY CORRUPTION (56) References Cited
(71) Applicant: JUNIPER NETWORKS, INC., U.S. PATENT DOCUMENTS
Sunnyvale, CA (US) 5418956 A * 5/1995 Willmancccocovc. 711/206
. 5,434,872 A * 7/1995 Petersen GOG6F 13/128
(72) Inventors: Samuel Jacob, Bangalore (IN); Vijay 370/445
Paul, Bangalore (IN) 5,469,557 A * 11/1995 Saltetal.cccoevenne 711/103
5,974,500 A * 10/1999 Maletsky GOGF 12/1433
o . 365/120
(73) ASSlgnee' Junlper Networks’ Inc" Sunnyvalei CA 6’009’495 A 3k 12/1999 DeROO et al' """""""""" 711/103
(US) 6,237,786 Bl 5/2001 Ginter et al.
7,228,404 B1* 6/2007 Pateletal. 712/228
(*) Notice: Subject to any disclaimer, the term of this 8,176,391 B2* 5/2012 Baysah GOGF ;}21/(7)4713
patent is extended or adjusted under 35 8621337 Bl 122013 Jacobetal,
U.S.C. 154(b) by 53 days. 2002/0166036 Al* 11/2002 Watts, Jr. ...ooccc.... GOGF 21/79
711/163
(21) Appl. No.: 14/138,977 (Continued)
(22) Filed: Dec. 23, 2013 OTHER PUBLICATIONS
. L “FreeBSD The Power to Serve,” www.freebsd.org/cgi/man.
(65) Prior Publication Data cgi?query=memgaurd@sektion=9, pp. 1-4, Aug. 2, 2010, FreeBSD
US 2014/0122826 A1~ May 1,2014 83
Primary Examiner — Albert Decady
Assistant Examiner — Enam Ahmed
Related U.S. Application Data (74) Attorney, Agent, or Firm — Haritty & Harrity, LLP
(63) Continuation of application No. 12/894,521, filed on (57) ABSTRACT
Sep. 30, 2010, now Pat. No. 8,621,337. A device identifies, based on a program code instruction, an
attempted write access operation to a fenced memory slab,
(51) Imt.ClL where the fenced memory slab includes an alternating
GOG6F 11/00 (2006.01) sequence of data buffers and guard buffers. The device
GO6F 12/10 (2016.01) assigns read-only protection to the fenced slab and invokes,
GOG6F 11/07 (2006.01) based on the attempted write access operation, a page fault
(52) US.CL operation. When a faulting address of the attempted write
CPC ..o GOGF 12/10 (2013.01); GOGF 11/073 operation is not an address for one of the multiple data buft-
(2013.01); GO6F 11/0763 (2013.01) ers, the device performs a panic routine. When the faulting
(58) Field of Classification Search address of the attempted write operation is an address for one

CPC GOGF 11/0763; GOGF 11/085; GOGF
11/0751; HOS5K 999/99; HO4L 1/0061
USPC i 714/811

See application file for complete search history.

MEMORY FENCE AND READ-ONLY ACCESS

(]

| RECEIVE WRITE ACCESS ACTION TO SLAB %\«610

]

I INVOKE PAGE FAULT HANDLER |~615

]

I IDENTIFY FAULTING ADDRESS IN CONTROL }\,620

‘ CONFIGURE SLAB AS FENCED SLAB WITH }»605

REGISTER

625

FAULTING ADDRESS
IN FENCED SLAB?

AND ENABLE SINGLE-STEPPING

{1

' ENABLE WRITE ACCESS FOR FENCED SLAB #645

of'the multiple data buffers, the device removes the read-only
protection for the fenced slab and performs a single step
processing routine for the program code instruction.

20 Claims, 9 Drawing Sheets

r 600

PERFORM DEFAULT PAGE FAULT HANDLER 630
ROUTINE

PERFORM PANIC ROUTINE }\‘540

650
I INVOKE SINGLE STEP FAULT HANDLER H REMOVE WRITE ACCESS FROM SLAB }\655

US 9,411,743 B2

Page 2
(56) References Cited 2008/0216073 Al* 9/2008 Yatesetal. 718/100
2009/0100272 Al* 42009 Smeets .. 713/189
U.S. PATENT DOCUMENTS 2011/0219708 Al* 9/2011 Ohnishietal. 52/79.1
2003/0228728 Al* 12/2003 Yu ...ccovvniniinns HO1L 27;1 12 2012/0144167 Al* 6/2012 Yatesetal.cccceceeeene. 712/216
438/201

2005/0120242 Al* 6/2005 Mayeretal. ... 713/201 * cited by examiner

U.S. Patent Aug. 9,2016 Sheet 1 of 9 US 9,411,743 B2

@
o
N
-
o
= 10
- -
0
-
0
-
™
= - -
w n
- (@)
o —

100
|

US 9,411,743 B2

Sheet 2 of 9

Aug. 9,2016

U.S. Patent

0G¢Z

< .LZ S0V

Z b
65z
p 3
110 S13NOVd JHVMAAVH
- 22
¢ I
AHOWIAN (S)H0SSIADOYd

SO MHOMLIN
ﬂn\
572

022 NOILIOd I9VMII0S

* 00¢

US 9,411,743 B2

Sheet 3 of 9

Aug. 9,2016

U.S. Patent

¢ "Bi4
09% 0% 098
JOV4HILNI JOIN3IA JA0IA3A
NOILLVOINNNWINOD 1NdiNno 1NdNI
(oL€)
sng /
S& ove £t o2E
A2INA3A ASOWIAN
JOVHOLS NOd NIVIA HOSSID0Hd

US 9,411,743 B2

Sheet 4 of 9

Aug. 9, 2016

U.S. Patent

[0]54
HATANVYH LNV
d31S FTONIS

0ct
H3TANVH
17Nvd4 39vd

Oly
HIOVNYIN
AHOWIN

o 00t

US 9,411,743 B2

Sheet 5 of 9

Aug. 9,2016

U.S. Patent

G "bi4
(0es)
¥344ng
owm om,m omm om,mﬁw
{ (({ (((
0TS 0LS oLS 015 oLS 0LS 0L
1/1ANomv
avis
g3oN3d
N . S
(0z9) —
VLVAvL3In (019) 4r1goomv
Y¥3d44ng
v1va avis
Q3ION34-NN

US 9,411,743 B2

Sheet 6 of 9

Aug. 9,2016

U.S. Patent

HITANVYH 11NV d31S FT1ONIS IHOANI

i

ONIdd31S-3TONIS FTdVYNI ANY

av1s J30N34 HO4 SS300V A LM IFTgVYN3

9 "614
GG~ avIsS NOYHd SSADOY 3LI-dM IAOINIH e EE—
0G99~
GO~
09~ ANILLNOY OINVd WHOH4¥dd
089~ ANILNOY

HITANVH LNV 39Vd 1INV43A WHO4H3d

¢135440 QIMVANI SYH
SS34AAv ONiLINV4d

GE9

¢8V1S G3ON3IH4 NI
SS34AAv ONILINYd

629

029~

d31S103Y
TOYLNOD NI SS3HAAY ONILLTINYA AJILN3Al

A

GO~

HFT1ANVH LTNY4 39Vd IMOANI

A

019~

av71S OL NOLLOV SS3DOV JLI-HM JAIR0TH

A

G094

SST00V ATNO-GV3Id ANV d0N34 AHOWEN

HLIM gV1S d30N3d4 SV aVv11S FdNOIdNOCD

US 9,411,743 B2

Sheet 7 of 9

Aug. 9,2016

U.S. Patent

300D
W31904dd

!0 uanyax
‘o=[t]ea
(++T “I4HHEZIS HONZI LSEI>T!0=T)I03F
!(ea ’,u\dg VA PO3EDOTT® ()OOTI® ®0Ud3F 3593 T30sAs u\,) Fyutad
! (MOLIVM W ‘dWIEL W ‘EZIS HONZd LSHEL)OOTTew = ea

!eay IEYUD
‘I 3jut
}

(SHYY YTTIANYH TTILOSAS)DOTT® ous3 3s93 T130s4g
JuT OT3e3s

illoom

US 9,411,743 B2

Sheet 8 of 9

Aug. 9,2016

U.S. Patent

g ‘Bi4

<qp

<ap

<qp

Aymapy‘ 0% TAOW :eExQ+AUyM I®3UD P 3e peddoas
[¥7000T PT3 €L pTd pesayl]

otued :x9jue 'ggy

0 = prndo

we3T pajoejzoxd o3 ss900y HONEJ oTued
8ZT 330 obeg ¢ogzgLOOX) dI 0BOPLIEOX(VA(I[neJ 9Oudy wew SIPURY) :LGZ

jutod 03 jurod J/UISYYD SIANITISJUT :DUTISSAIRY AdOIUY
qisgpe/asp/ uo sdump TOUISDY

89713 uotjzeanbBryuco Hurpro]

18eOprOoIg SSIIPPY-JI D0BIFIDIUIL

dn o3 psburyo sjze3zs urT :Quod

pojunousTp Arasdoad jou sem / ONINNYM
BISQPBR/A®P/:SIN WOIXF 300I junow o3 butdig

OINVd S3SNv2d 0008LIED ©3 DOOFLIEOXQ BA DBUTOUSI (DOTTRZ IBTS) :L¥6
LNZNETE AIVYANI 0003ILIED O3 DOODLIEOXQ BA DUTOUSI (DOTTRZ IBTS) : L¥6
Ol §S302V 000®LFIED O3 0QOPLIESXQ ®A HUTDUSI (DOTTRZ qeTS) iLP6

0006LFED O3 DO0BLIESX(Q =a Durousg (DOTTRZ JBIS) L6
0008LIED ©3 DO0LLIEDX(Q ®A Dutousg (0O0TTeZz JETS) :L¥6
000LLIED ©3F 0009LIEDXQ ©a DButousg (0OTTeZ qeTs) :L¥6
0009LFED O3 QQ0GLIFEDX(Q ea Dutdusg (0oTTeZ JBIS) L6
"ZS0S366FPPELO9GY/PTSIN ST FIsope Ioptacad I03 TogeT :TIEVTI WOIED

o 008

US 9,411,743 B2

Sheet 9 of 9

Aug. 9,2016

U.S. Patent

6 b1

<qp
-—- BAPUPIYFAXQ

= dgs ‘oeqpzqiqx0 = dse ‘Fopqgigzx = dre ‘(130s&s ‘ZedTH gSHeS13d ‘20Z) TTedsAs ---

0ZX0+TTE0sAS (8X03UTX 38 () TT2osASs (8X03UTX
. GEEX0+TTeOsAs 3® (8E£PZ8JED) TTR0sis

_ ¥6x0+T130sds e (“'q90EPG0°'9’81°230Z8AED’ O¥ZPYIER) TA0SAs
PEIX0+T30sAs pueraesn 3o (“'yEYEIAFA‘0'Z’ PTOZBACO ' 0PZPYFED) TA0SAs pueraesn
L8IX0+3001 T30sds e (00y9’ edqe8ded’ v’ 099z89eD ' peqzgdeo) 3001 13084s

GEXQ+OOTT®
souay 3s93 Taosds 3e ('peqzgded‘ peqzeded’ 0’0/ 0970980°) O0TTR ®0uSy 3593 T30sAs

~== 7GUZ8UEOX() = dg® prUZB8ULOX() = dSO 'GOBEBLOOX(Q = dI® 'OX(deij ---
gxp+dexzgred e ()deayyres

pIIx0+dex3 3e (y0qzgdco)deay

9eTx0+oTued e ("' 0E9RE80Z ' 08'GO8ZBLOD080PLIED ‘6LF0F80D) oTued

e 0+AUM I93UD gpPY 3° (/0’pGRZBAED'6LF0¥80°‘OPIGZR00 ‘OPSZE00) Aus I83uUs gpY
0PZPPIEOX0 P3 FPHO00T PT3 €L PTd Butodeay

19 <qp

Hlvd <gp
3400 _ _ <qp
A318904d Auagpi‘o$ TACU (BExO+AUM I93UD gpPY 3e peddoas

[70001 PT3 £L pTd pesays]

otued :xsjus gaMd

0 = pIndo

we3T peldejoad o3 sSs800Y [IONIE :oTurd

8Z1 330 °bed GO8Z8LOOX0 JI 0BOPLIEDX(0 VA(ITNERI S0USF WW STPURY) ! LGZ

1fl.oom

US 9,411,743 B2

1
DETECTING MEMORY CORRUPTION

RELATED APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/894,521, filed Sep. 30, 2010 (now U.S. Pat.
No. 8,621,337), the disclosure of which is incorporated
herein by reference.

BACKGROUND

A computing device, such as a personal computer or a
network device, may include an operating system (OS) that
provides an interface between hardware of the computing
device and software processes that are executed by the com-
puting device. The OS may particularly include a kernel,
which may be a central component of the OS and may act as
a bridge between the software processes and the actual data
processing done at the hardware level.

Memory corruption occurs when the contents of a memory
location are unintentionally modified due to programming
errors. When the corrupted memory contents are used later in
a computer program, it may lead to a program crash or unex-
pected program behavior. Memory corruption in a kernel is
difficult to debug because the corruption could be from any
code (including third party drivers) and it could aftect difter-
ent data areas during each run. Some debugging tools attempt
to detect memory corruption at a point in time after the cor-
ruption has occurred (e.g., at the time of free() in FreeBSD),
at which point the corrupting code context is lost. Other tools
can detect memory corruption at the exact moment of corrup-
tion, but require a lot of memory (usually a memory page even
for 16 byte allocations). This large memory requirement
poses problems when trying to debug problems in scaled
scenarios where there is insufficient free memory to allow for
usage of such tools.

SUMMARY

In one implementation, a method performed by a network
device may include configuring, by a processor of the net-
work device, a memory block as a fenced slab that includes
multiple data buffers and multiple guard buffers, and assign-
ing, by the processor, a read-only protection to the fenced
slab. The method may further include identifying, by the
processor, an attempted write access operation, based on a
program code instruction, to one of the multiple data buffers
or multiple guard buffers; recording, by the processor and in
a control register, a faulting address for the attempted write
access operation; invoking, by the processor and based on the
identifying of the attempted write access operation, a page
fault operation; retrieving, by the processor and from the
control register, the faulting address; determining, by the
processor, whether the faulting address is associated with the
fenced slab; determining, by the processor and when the
faulting address is associated with the fenced slab, whether
the faulting address is an address for one of the multiple data
buffers; performing, by the processor and when the faulting
address is not an address for one of the multiple data buffers,
a panic routine; removing, by the processor and when the
faulting address is an address for one of the multiple data
buffers, the read-only protection for the fenced slab; and
performing, by the processor and when the faulting address is
the address for one of the multiple data buffers, a single step
processing routine for the program code instruction.

In another implementation, a device may include a
memory to store instructions and a processor. The processor

10

15

20

25

30

35

40

45

50

55

60

65

2

may execute instructions in the memory to identify, based on
a program code instruction, an attempted write access opera-
tion to a fenced memory slab, where the fenced memory slab
includes an alternating sequence of data buffers and guard
buffers; invoke, based on the attempted write access opera-
tion, a page fault operation; perform, when a faulting address
of the attempted write operation is not an address for one of
the multiple data bufters, a panic routine; and perform, when
the faulting address of the attempted write operation is an
address for one of the multiple data buffers, a single step
processing routine for the program code instruction.

In a further implementation, a computer-readable memory
having computer-executable instructions may include one or
more instructions to identify, based on a program code
instruction, an attempted write access operation to a fenced
memory slab, where the fenced memory slab includes an
alternating sequence of data buffers and guard buffers; one or
more instructions to assign read-only protection to the fenced
slab; one or more instructions to invoke, based on the
attempted write access operation, a page fault operation; one
or more instructions to perform, when a faulting address of
the attempted write operation is not an address for one of the
multiple data buffers, a panic routine; one or more instruc-
tions to remove, when the faulting address of the attempted
write operation is an address for one of the multiple data
buffers, the read-only protection for the fenced slab; one or
more instructions to perform, when the faulting address of the
attempted write operation is an address for one of the multiple
data buffers, a single step processing routine for the program
code instruction; and one or more instructions to re-assign,
after the single step processing routine, the read-only protec-
tion to the fenced slab.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more implementations described herein and, together with
the description, explain these implementations. In the draw-
ings:

FIG. 1 is a diagram of an example system in which con-
cepts described herein may be implemented;

FIG. 2 is a block diagram of components of an example
network device shown in FIG. 1;

FIG. 3 is a diagram of example components of a computing
device shown in FIG. 1;

FIG. 4 is a diagram illustrating example functional com-
ponents of the network device or the computing device of
FIG. 1,

FIG. 5 is diagram illustrating an example data structure for
a slab memory;

FIG. 6 is a flow diagram illustrating an example process for
detecting memory corruption according to an implementa-
tion described herein; and

FIGS. 7-9 provide illustrations of memory corruption
detection according to an implementation described herein.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements. Also, the
following detailed description does not limit the invention.

Systems and/or methods described herein may provide a
debugging tool to detect memory corruption. The systems
and/or methods may configure a read-only memory slab (or
block) with an alternating sequence of data buffers and guard

US 9,411,743 B2

3

buffers (referred to herein as a “fenced memory slab” or a
“fenced slab”). When a program code instruction causes an
attempted write access operation to any address within the
fenced memory slab, a page fault operation may be invoked.
If a faulting address of the attempted write operation is an
invalid address (e.g., not an address for one of the multiple
data bufters), a panic routine may be performed to identify the
exact program code associated with the page fault. If the
faulting address of the attempted write operation is a valid
address (e.g., an address for one of the multiple data buffers
within the fenced memory slab), the read-only protection for
the fenced slab may be removed and a single step processing
routine may be performed to provide a debug trace fault.

Implementations described herein are described primarily
in the context of enhancing a slab memory allocator (or varia-
tions thereof) used in most of the operating system kernels
based on x86 instruction set architectures (e.g., Intel 8086
instruction sets and successors). However, in other imple-
mentations, other memory allocators and/or architectures
(e.g., a memory management unit (MMU)) can be used.

FIG. 1 is a diagram of an example system 100 in which
concepts described herein may be implemented. System 100
may include a wide area network (WAN) 110 connected to
one or more private networks 120-A and 120-B (collectively
referred to as private networks 120) and a computing device
130. Private networks 120 may each, for example, include
corporate or individual local area networks (LLANSs).

WAN 110 may generally include one or more types of
networks. For instance, WAN 110 may include a cellular
network, a satellite network, the Internet, or a combination of
these (or other) networks that are used to transport data.
Although shown as a single element in FIG. 1, WAN 110 may
include a number of separate networks that function to pro-
vide services to private networks 120 and computing devices,
such as computing device 130. WAN 110 may be imple-
mented using a number of network devices 115. Network
devices 115 may include, for example, routers, switches,
gateways, and/or other devices that are used to implement
WAN 110.

Private networks 120 may each include a number of com-
puting devices, such as, for example, client computing sta-
tions 125 and network devices 127. Client computing stations
125 may include computing devices of end-users, such as
desktop computers or laptop computers. Network devices
127, similar to network devices 115, may include network
devices used to implement private networks 120. For
example, each of network devices 127 may include a data
transfer device, such as a router, a gateway, a switch, a fire-
wall, a network interface card (NIC), a hub, a bridge, a proxy
server, an optical add-drop multiplexer (OADM), or some
other type of device that processes and/or transfers traffic.

Network devices 115 and 127 may each implement a net-
work operating system that controls the resources of the net-
work device and provides an interface to the network device
through which users can modify the configuration of the
network device.

Computing device 130 may include, for example, a laptop
or personal computer connected to WAN 110. Alternatively,
computing device 130 may include a mobile communication
device, such as a cell phone, etc.

In the example system shown in FIG. 1, one WAN 110, two
private networks 120-A and 120-B, and one computing
device 130 are shown. In other implementations, system 100
may include fewer devices, different devices, differently
arranged devices, and/or additional devices than those
depicted in FIG. 1. Alternatively, or additionally, one or more

10

15

20

25

30

35

40

45

50

55

60

65

4

devices of system 100 may perform one or more other tasks
described as being performed by one or more other devices of
system 100.

FIG. 2 is a block diagram of an example network device
200, which may correspond to one of network devices 115 or
127. In order to increase throughput, network device 200 may
use dedicated hardware to assist in processing incoming units
of'data, such as packets. In some alternative implementations,
units of data (data units) other than packets may be used. As
shown in FIG. 2, network device 200 may generally include a
software portion 220 and a hardware portion 230.

Software portion 220 may include software designed to
control network device 200. Software portion 220 may par-
ticularly include a network operating system (OS) 225. For
example, network operating system 225 may control hard-
ware portion 230 and may provide an interface for user con-
figuration of network device 200. In general, software portion
220 may implement the functions of network device 200 that
are not time critical. The functions described as being per-
formed by software portion 220, may be implemented
through, for example, one or more general purpose proces-
sors 222 and one or more computer memories 224. Processors
222 may include processors, microprocessors, or other types
of processing logic that may interpret and execute instruc-
tions. Computer memories 224 (also referred to as computer-
readable media herein) may include random access memories
(RAMs), read-only memories (ROMs), and/or other types of
dynamic or static storage devices that may store information
and instructions for execution by one or more processors 222.

Hardware portion 230 may include circuitry for efficiently
processing packets received by network device 200. Hard-
ware portion 230 may include, for example, logic, such as an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA), and/or a content-addressable
memory (CAM). When network device 200 is a router, hard-
ware portion 230 may, for example, receive incoming pack-
ets, extract header information for the packets, and process
the packets based on the extracted header information. When
network device 200 is a firewall, hardware portion 230 may,
for example, receive incoming packets, extract header infor-
mation from the packets, and match portions of the header
information to a lookup table, such as one stored in a ternary
CAM, to determine whether the packet should be dropped.

Network device 200 may additionally include one or more
input ports 250 for receiving incoming packets and one or
more output ports 255 for transmitting an outgoing packet. In
some implementations, a port may act as both or one of an
input port 250 or an output port 255. Ports 250/255 may also
beused to receive remote user connections for configuring the
operation of network device 200.

Although FIG. 2 shows example components of network
device 200, in other implementations, network device 200
may include fewer components, different components, differ-
ently arranged components, or additional components than
depicted in FIG. 2. Alternatively, or additionally, one or more
components of network device 200 may perform one or more
othertasks described as being performed by one or more other
components of network device 200.

FIG. 3 is a diagram of example components of a computing
device 300, which may correspond to one of client computing
stations 125 or computing device 130. As shown in FIG. 3,
computing device 300 may include a bus 310, a processor
320, a main memory 330, a read only memory (ROM) 340, a
storage device 350, an input device 360, an output device 370,
and a communication interface 380. Bus 310 may include a
path that permits communication among the elements of the
device.

US 9,411,743 B2

5

Processor 320 may include a processor, microprocessor, or
processing logic (e.g., an ASIC or a FPGA) that may interpret
and execute instructions. Main memory 330 may include a
RAM or another type of dynamic storage device that may
store information and instructions for execution by processor
320. ROM 340 may include a ROM device or another type of
static storage device that may store static information and
instructions for use by processor 320. Storage device 350 may
include a magnetic and/or optical recording medium and its
corresponding drive.

Input device 360 may include a mechanism that permits an
operator to input information to the device, such as a key-
board, a mouse, a pen, voice recognition and/or biometric
mechanisms, etc. Output device 370 may include a mecha-
nism that outputs information to the operator, including a
display, a light emitting diode (LED), a speaker, etc. Com-
munication interface 380 may include any transceiver-like
mechanism that enables the device to communicate with
other devices and/or systems.

As will be described in detail below, computing device 130
may perform certain operations in response to processor 320
executing software instructions contained in a computer-
readable medium, such as main memory 330. A computer-
readable medium may be defined as a physical or logical
memory device. A logical memory device may include
memory space within a single physical memory device or
spread across multiple physical memory devices. The soft-
ware instructions may be read into main memory 330 from
another computer-readable medium, such as data storage
device 350, or from another device via communication inter-
face 380. The software instructions contained in main
memory 330 may cause processor 320 to perform processes
that will be described later. Alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to implement processes described herein. Thus,
implementations described herein are not limited to any spe-
cific combination of hardware circuitry and software.

Although FIG. 3 shows example components of computing
device 300, in other implementations, computing device 300
may include fewer components, different components, differ-
ently arranged components, or additional components than
depicted in FIG. 3. Alternatively, or additionally, one or more
components of computing device 300 may perform one or
more other tasks described as being performed by one or more
other components of computing device 300.

FIG. 4 is a block diagram of example functional compo-
nents of a device 400 that may correspond to network device
115, client computing device 125, network device 127, and/or
computing device 130. In one implementation, the functions
described in connection with FIG. 4 may be performed by one
or more components of network device 200 (FIG. 2) or com-
puting device 300 (FIG. 3). As illustrated, device 400 may
include a memory manager 410, a page fault handler 420, and
a single step fault handler 430. In one implementation,
memory manager 410, page fault handler 420, and single step
fault handler 430 may be included with an operating system
(e.g., operating system 222) of device 400.

Memory manager 410 may include hardware or a combi-
nation of hardware and software to configure slab memory for
device 400 and to detect invalid memory operations. In one
implementation, slab memory may be configured as either an
un-fenced (e.g., typical) slab or a fenced slab. Based on
instructions from, for example, an operator, memory alloca-
tor 410 may assign, to a slab, appropriate values in a page
table entry corresponding to a particular memory location.
The page table entry may represent a physical address of a
page inmemory and a particular offset into the page. The page

5

10

15

20

25

30

35

40

45

50

55

60

65

6

table entry may also indicate permissions (e.g., read-only
access, read/write access, etc.) for a particular slab. Slab
memory configurations are described further in connection
with FIG. 5.

FIG. 5 provides a diagram of slab memory configurations
according to an implementation described herein. As shown
in FIG. 5, slab memory component configurations may
include an un-fenced slab 500 and a fenced slab 502. In
implementations described herein, a zone (e.g., a portion of
memory) may be configured as one of un-fenced slab 500 or
a fenced slab 502. Fenced slab 502 may be configured, for
example, to perform error detection for particular code.

Un-fenced slab 500 may represent a contiguous portion of
memory (e.g. memory 224 or main memory 330) that may
include one or more physically contiguous pages. Un-fenced
slab 500 may include multiple data buffers 510 and an on-
page slab metadata portion 520. Data buffers 510 may include
space to store objects assigned by an OS kernel. On-page slab
metadata portion 520 may include information needed to
retain the slab, such as a slab header. In one implementation,
each of data buffers 510 may be of equal size, and the number
of data buffers may be sufficient to fill a one page (e.g., while
leaving sufficient space for meta data portion 520.) Un-fenced
slab 500 may be configured with read/write access based on,
for example, an entry in page table that corresponds to
unfenced slab 500.

Fenced slab 502 may represent another contiguous portion
of memory (e.g. memory 224 or main memory 330) that may
include one or more physically contiguous pages. Fenced slab
502 may include multiple data buffers 510, multiple guard
buffers 530, and on-page slab metadata portion 520. More
particularly, a guard buffer 530 may be placed after each data
buffer 510. Guard buffer 530 may include a portion of
memory to which no data may be written. In one implemen-
tation, a size of guard bufter 530 may be equal to that of data
buffer 510. Fenced slab 502 may be protected from write
access by setting the appropriate values in the page table entry
corresponding to fenced slab 502. Thus, whenever a kernel
invokes a write access to fenced slab 502, a page fault (or
protection fault) routine may be invoked, regardless of
whether the write access is actually valid or invalid.

Although FIG. 5 shows example arrangement of un-fenced
slab 500 and fenced slab 502, in other implementations, un-
fenced slab 500 and fenced slab 502 may be arranged difter-
ently than depicted in FIG. 5.

Referring back to FIG. 4, memory manager 410 may inter-
rupt execution of a software program when the software pro-
gram attempts to access pages that are not present in RAM or
pages that do not conform to the permission attributes for a
given page. For example, if a write operation is attempted for
fenced slab 502, memory manager 410 may invoke a page
fault. When a page fault interruption occurs, memory man-
ager 410 may store a page fault linear address in a control
register (e.g., a CR2). Memory manager 410 may invoke page
fault handler 420 to resolve the memory access problem.

Page fault handler 420 may include hardware or a combi-
nation of hardware and software to identify and resolve page
faults received from memory manager 410. In one implemen-
tation, page fault handler 420 may access the control register
to identify a page fault linear address associated with the page
fault. If the page fault linear address corresponds to one of
un-fenced slabs 500, page fault handler 420 may perform
typical page fault operations to either resolve or report the
page fault.

Ifthe page faultlinear address corresponds to one of fenced
slabs 502, page fault handler 420 may invoke steps to detect
the point of the page fault. Page fault handler 420 may first

US 9,411,743 B2

7

determine whether the write operation associated with the
page fault linear address is within a correct offset. A correct
offset may be considered an offset from the page which falls
in one of data buffers 510 and not in metadata portion 520 or
one of guard buffers 530. Identification of an invalid offset
may cause page fault handler 420 to invoke a panic routine.
For example, if a write operation to one of guard buffers 530
occurs, page fault handler 420 may immediately default to a
panic routine to identify corrupting code. The panic routine
(or kernel panic) may generally output an error message to a
console and/or dump an image of kernel memory to disk for
purposes of debugging. The panic routine may wait for the
system to be manually rebooted or initiate an automatic
reboot.

If a write operation to one of buffers 510 (e.g., of fenced
slab 502) occurs, then page fault handler 420 may enable
write access for fenced slab 502 (e.g., by modifying the
appropriate values in the page table entry) and may invoke a
single step processing routine. In one implementation, the
single step processing routine may be performed by invoking
single step fault handler 430.

Single step fault handler 430 may include hardware or a
combination of hardware and software to identify particular
instructions that may have resulted in a particular page fault.
For example, after write access is enabled for fenced slab 502,
the instruction of the application (e.g., the instruction that
triggered the page fault) may be restarted by single step fault
handler 430. For example, single step fault handler 430 may
step through the individual instruction(s) of the application
program, may monitor how the processor (e.g., processor 222
or 320) state changes after each instruction, and may identify
errors based on the changes in the processor state. Thus,
single step fault handler 430 may execute the application
instruction without a page fault, but will generate a debug
trace fault after executing the instruction. As part of the debug
trace fault, single step fault handler 430 may remove write
access (e.g., by modifying the appropriate values in the page
table entry) for fenced slab 502 so that future write operations
would again trigger a page fault.

Although FIG. 4 shows example functional components of
device 400, in other implementations, device 400 may
include fewer functional components, different functional
components, differently arranged functional components, or
additional functional components than depicted in FIG. 4.
Alternatively, or additionally, one or more functional compo-
nents of device 400 may perform one or more other tasks
described as being performed by one or more other compo-
nents of device 400.

FIG. 6 is a flow diagram illustrating an example process
600 for detecting memory corruption in a kernel according to
an implementation described herein. In one implementation,
process 600 may be performed by device 400. In another
implementation, process 600 may be performed by another
device or group of devices including or excluding device 400.

Process 600 may include configuring a slab as fenced slab
with a memory fence and read-only access (block 605). For
example, as described above in connection with FIGS. 4 and
5, slab memory may be configured as either un-fenced slab
500 or fenced slab 502. Based on instructions from, for
example, an operator, memory allocator 410 may assign, to a
slab, appropriate values in a page table entry corresponding to
a particular memory location. The page table entry may also
indicate permissions (e.g., read-only access, read/write
access, etc.) for a particular slab. Fenced slab 502 may rep-
resent a contiguous portion of memory (e.g. memory 224 or
main memory 330) that may include one or more physically
contiguous pages. Fenced slab 502 may include multiple data

10

15

20

25

30

35

40

45

50

55

60

65

8

buffers 510 with a guard buffer 530 after each data buffer 510.
The size of guard bufter 530 may be equal to that of data
buffer 510. Fenced slab 502 may be protected from write
access by setting the appropriate values in the page table entry
corresponding to fenced slab 502. Thus, whenever a kernel
invokes a write access to fenced slab 502, a page fault (or
protection fault) routine may be invoked, regardless of
whether the write access is actually valid or invalid.

A write action to the slab may be received (block 610), a
page fault handler may be invoked (block 615), and a faulting
address may be identified in a control register (block 620). For
example, as described above in connection with FIGS. 4 and
5, fenced slab 502 may be protected from write access by
setting the appropriate values in the page table entry corre-
sponding to fenced slab 502. Thus, whenever an application
instruction invokes a write access to fenced slab 502, a page
fault (or protection fault) routine may be invoked, regardless
of whether the write access is actually valid or invalid.
Memory manager 410 may interrupt execution of a software
program when the software program attempts a write opera-
tion for fenced slab 502. When a page fault interruption
occurs, memory manager 410 may store a page fault linear
address in a control register. Memory manager 410 may then
invoke page fault handler 420 to resolve the memory access
problem.

Referring back to FIG. 6, it may be determined if the
faulting address is within the fenced slab (block 625). If the
faulting address is not within the fenced slab (block 625—
NO), a default page fault handler routine may be performed
(block 630). For example, as described above in connection
with FIG. 4, page fault handler 420 may access the control
register to identify a page fault linear address associated with
the page fault. If the page fault linear address corresponds to
one of un-fenced slabs 500, page fault handler 420 may
perform typical page fault operations to either resolve or
report the page fault.

If the faulting address is within the fenced slab (block
625—YES), it may be determined if the faulting address has
an invalid offset (block 635). If the faulting address has an
invalid offset (block 635—YES), a panic routine may be
performed (block 640). For example, as described above in
connection with FIG. 4, page fault handler 420 may deter-
mine whether a write operation associated with a page fault
linear address is within a correct offset. Identification of an
invalid offset may cause page fault handler 420 to invoke a
panic routine. For example, if a write operation to one of
guard buffers 530 occurs, page fault handler 420 may imme-
diately default to a panic routine to identify corrupting code.
The panic routine (or kernel panic) may generally output an
error message to a console and/or dump an image of kernel
memory to disk for purposes of debugging. The panic routine
may wait for the system to be manually rebooted or initiate an
automatic reboot.

Ifthe faulting address does not have an invalid offset (block
635—NO), write access for the fenced slab may be enabled
and single-stepping may be enabled (block 645), a single step
fault handler may be invoked (block 650), and write access
may be removed from the fenced slab (block 655). For
example, as described above in connection with FIG. 4, if a
write operation to one of buffers 510 (e.g., of fenced slab 502)
occurs, then page fault handler 420 may enable write access
for fenced slab 502 (e.g., by modifying the appropriate values
in the page table entry) and may invoke a single step process-
ing routine. In one implementation, the single step processing
routine may be performed by invoking single step fault han-
dler 430. Single step fault handler 430 may restart the instruc-
tion that triggered the page fault. For example, single step

US 9,411,743 B2

9

fault handler 430 may step through the individual
instruction(s) of the application program, may monitor how
the processor (e.g., processor 222 or 320) state changes after
each instruction, and may identify errors based on the
changes in the processor state. Thus, single step fault handler
430 may execute the application instruction without a page
fault and may generate a debug trace fault after executing the
instruction. As part of the debug trace fault, single step fault
handler 430 may remove write access (e.g., by modifying the
appropriate values in the page table entry) for fenced slab 502
so that future write operations would again trigger a page
fault.

FIGS. 7-9 provide illustrations of memory corruption
detection according to an implementation described herein.
FIG. 7 provides an example code section 700 that includes
instructions designed to cause memory corruption for a
fenced slab. FIG. 8 is an example screen shot of a section 800
of'atest output using code section 700. Section 800 shows that
access for a first 128 elements (e.g. 0-127) was allowed and
that access to an invalid element (128) caused a panic. Refer-
ring to FIG. 9, use of a backtrace (“bt”) command reveals the
particular problematic code path.

In the systems and/or methods described herein, a memory
slab may be configured as a read-only fenced slab that
includes multiple data buffers and multiple guard buffers.
Write operations, based on program code instructions, to any
address in the fenced slab may invoke a page fault. Once a
page fault is invoked, the page fault handler may identify a
particular faulting address and associate the faulting address
with the fenced slab. If the faulting address is a valid address
(e.g., for a data buffer), the page fault handler may tempo-
rarily remove read-only protection for the fenced slab and
invoke a single step fault handler to execute the program code
instruction. If the faulting address is an invalid address (e.g.,
for a guard buffer), the page fault handler may invoke a panic
function.

The systems and/or methods described herein may provide
for immediate detection of memory corruption and/or buffer
overflow. The systems and/or methods described herein may
be implemented without changes to existing memory align-
ment and access patterns, but may use less memory than
existing techniques.

The foregoing description of example implementations
provides illustration and description, but is not intended to be
exhaustive or to limit the invention to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from practice of the
invention.

For example, while a series of blocks has been described
with respect to FIG. 6, the order of the blocks may be varied
in other implementations. Moreover, non-dependent blocks
may be implemented in parallel.

It will be apparent that embodiments, as described herein,
may be implemented in many different forms of software,
firmware, and hardware in the implementations illustrated in
the figures. The actual software code or specialized control
hardware used to implement embodiments described herein
is not limiting of the invention. Thus, the operation and
behavior of the embodiments were described without refer-
ence to the specific software code—it being understood that
software and control hardware may be designed to implement
the embodiments based on the description herein.

Further, certain implementations described herein may be
implemented as a “component” that performs one or more
functions. This component may include hardware, such as a

10

15

20

25

30

35

40

45

55

60

10

processor, microprocessor, an application specific integrated
circuit, or a field programmable gate array; or a combination
of hardware and software.

It should be emphasized that the term “comprises” and/or
“comprising” when used in this specification is taken to
specify the presence of stated features, integers, steps, or
components, but does not preclude the presence or addition of
one or more other features, integers, steps, components, or
groups thereof.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
the invention. In fact, many of these features may be com-
bined in ways not specifically recited in the claims and/or
disclosed in the specification.

No element, act, or instruction used in the description of the
present application should be construed as critical or essential
to the invention unless explicitly described as such. Also, as
used herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on,” as
used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

What is claimed is:
1. A method comprising:
determining, by a device, that a program code instruction
causes an attempted write access operation to a memory
block;
determining, by the device and after determining that the
program code instruction causes the attempted write
access operation, whether a faulting address, associated
with the attempted write access operation, has an invalid
offset;
removing, by the device, a read-only protection for the
memory block when the faulting address does not have
the invalid offset; and
performing, by the device and when the faulting address
does not have the invalid offset, a single step processing
routine to provide a debug trace for the program code
instruction.
2. The method of claim 1, where determining whether the
faulting address has the invalid offset comprises:
determining that the faulting address is an address for one
of a plurality of memory buffers of the memory block,
and
determining whether the faulting address has the invalid
offset based on determining that the faulting address is
the address for the one of the plurality of memory buff-
ers.
3. The method of claim 1, further comprising:
configuring the memory block that includes a plurality of
memory buffers and a plurality of guard buffers.
4. The method of claim 1, further comprising:
performing a panic routine when the faulting address is not
valid.
5. The method of claim 4, where the panic routine identifies
program code associated with a page fault.
6. The method of claim 1, where determining whether the
faulting address has the invalid offset comprises:
determining that the faulting address is an address for one
of a plurality of guard bufters in the memory block, and
determining whether the faulting address has the invalid
offset based on determining that the faulting address is
the address for the one of the plurality of guard buffers.

US 9,411,743 B2

11

7. The method of claim 1, further comprising:

invoking a page fault operation based on determining that
the program code instruction causes the attempted write
access operation to the memory block.

8. The method of claim 3, where each of the plurality of
memory buffers is followed by one of a plurality of guard
buffers.

9. A system comprising:

one or more processors to:

identify a faulting address associated with an attempted
write access operation to a memory block;

determine whether the faulting address, associated with
the attempted write access operation, has an invalid
offset;

remove a read-only protection for the memory block
when the faulting address does not have the invalid
offset; and

perform a single step processing routine when the fault-
ing address does not have the invalid offset.

10. The system of claim 9, where the single step processing
routine provides a debug trace for a program code instruction
that causes the attempted write access operation.

11. The system of claim 9, where, when determining
whether the faulting address has the invalid offset, the one or
more processors are to:

determine that the faulting address is within the memory

block, and

determine whether the faulting address has the invalid oft-

set based on determining that the faulting address is
within the memory block.

12. The system of claim 9, where the one or more proces-
sors are further to:

invoke, when the faulting address is not valid, a panic

routine to identify corrupting code.

13. The system of claim 12, where the panic routine outputs
an error message to a console.

14. The system of claim 9, where the memory block is
configured to include a plurality of memory buffers and a
plurality of guard buffers.

15. The system of claim 9,

where the one or more processors are further to:

invoke a page fault operation based on the attempted
write access operation, and

5

20

25

30

12

where, when the single step processing routine is per-
formed, the one or more processors are further to:
remove write access for the memory block for a future
write access operation to trigger a page fault.

16. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by at least one

processor, cause the at least one processor to:

determine that a program code instruction causes an
attempted write access operation to a memory block;

determine whether a faulting address, associated with
the attempted write access operation, has an invalid
offset;

remove a read-only protection for the memory block
when the faulting address does not have the invalid
offset; and

invoke a processing routine to provide a debug trace for
the program code instruction when the faulting
address does not have the invalid offset.

17. The non-transitory computer-readable medium of
claim 16, where the memory block is configured to include a
plurality of memory buffers and a plurality of guard buffers.

18. The non-transitory computer-readable medium of
claim 16, where the instructions further comprise:

one or more instructions that, when executed by the at least

one processor, cause the at least one processor to:

determine that the faulting address is within a particular
section of the memory block before determining
whether the faulting address has the invalid offset.

19. The non-transitory computer-readable medium of
claim 16, where the instructions further comprise:

one or more instructions that, when executed by the at least

one processor, cause the at least one processor to:
remove write-access for the memory block after invok-
ing the processing routine.

20. The non-transitory computer-readable medium of
claim 16, where the instructions further comprise:

one or more instructions that, when executed by the at least

one processor, cause the at least one processor to:

set one or more values in a page table entry, correspond-
ing to the memory block, to provide the read-only
protection for the memory block.

#* #* #* #* #*

